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ABSTRACT

The usual Bayes-Stein shrinkages of maximum likelihood estimates towards

a common value may be refined by taking fuller account of the locations of the

individual observations. Under a Bayesian formulation, the types of

shrinkages depend critically upon the nature of the common distribution

assumed for the parameters at the second stage of the prior model. In the

present paper this distribution is estimated empirically from the data,

permitting the data to determine the nature of the shrinkages. For example,

when the observations are located in two or more clearly distinct groups, the

maximum likelihood estimates are roughly speaking constrained towards common

values within each group. The method also detects outliers; an extreme

observation will either be regarded as an outlier and not substantially

adjusted towards the other observations, or it will be rejected as an outlier,

in which case a more radical adjustment takes place. The method is

appropriate for a wide range of sampling distributions and may also be viewed

as an alternative to standard mLitiple comparisons, cluster analysis, and

nonparametric kernel methods.
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SIGNIFICANCE AND EXPLANATION

The shrinkage properties of Bayes-Stein estimators depend heavily on the

particular choices of tail behaviour and modality for the mixing distribution

in the exchangeable prior. In this paper the mixing distribution is therefore

estimated empirically, and nonparametrically from the data rather that being

constrained by an a priori choice of its functional form. It is estimated via

a modified maximum likelihood procedure as a discrete distribution. The

consequent posterior estimates place considerable emphasis upon the scatter of

the data and possess rather different properties from standard Bayes-Stein

techniques which shrink all the observations towards the same common value.

In two numerical examples the method proves useful both for detecting outliers

and for indicating whether the data should be divided into two or more groups.

INSPECTED A. ,

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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SOME DATA-ANALYTIC MODIFICATIONS TO BAYES-STEIN ESTIMATION

Tom Leonard

1. SIMULTANEOUS ESTIMATION

Consider observations x1,..,Xm which are independent, given respective parameters

8 8.0 and where xi possesses density, or probability mass function fi(x ,8 ) for

x e t and 6 e o, for i - 1,...,. Suppose further that the 6 are a priori

exchangeable and that they possess the prior probability structure of a random sample from

a distribution with density g(e.).1

Most Bayesian simultaneous estimation methods (e.g. Leonard, 1972, Lindley and Smith

1972, and Clevenson and Zidek, 1975, for binomial, normal, and Poisson situations) take the

density g to belong to a parametrized family, and then introduce second stage

distributional assumptions about the parameters of g. The choice of g very often

involves a unimodal density with thin tails e.g. normal or Gamma. These choices typically

lead to posterior estimates of the ei which shrink the xi towards a common value (e.g.

zero, the prior mean, or the average observation) thus providing Bayesian analogues of

frequentist procedures (e.g. James and Stein, 1961, and Efron and Morris, 1973a).

Whilst the previous choices of prior will be adequate in numerous situations,

shrinkages towards a common value may be less appropriate in cases where g does not

assume such an idealized form. For example, Dawid (1973) and Leonard (1974) investigate

prior densities with thicker tails than the normal and show that it is then unreasonable to

shrink in extreme observations as radically as suggested by an analysis based upon a normal

prior. Alternatively, g might possess more than one mode in which case fairly complex

shrinkages might be involved.

In the present paper we relax previous assumptions involving thin-tailed unimodal

densities and indeed proceed to the other extreme by supposing that the statistician

possesses absolutely no prior information about the density g. Our motivation is to

investigate the shrinkages which are actually suggested by the data, rather than imposed by
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particular functional forms assumed for g. If there were some partial information about

g then this could be introduced via the method proposed by Leonard (1978) for smoothing

densities; this aspect will not however be considered in this paper.

We will explore the consequences of estimating g empirically from the data. Readily

computable estimates will be obtained which avoid problems of specifying the tail-

behaviour, modality, and general shape of g.

For different reasons, Laird (1978) investigates the theoretical properties of the

maximum likelihood estimate of g, obtained by maximizing the log-likelihood functional

m
L(g) = I: log f fi(xi;ge()dO (1.1)

1-1 6

She shows that the maximum likelihood estimate of g is, under certain regularity

conditions, a mixture of Dirac-delta functions; a fairly complex scheme based upon the E4

algorithm is proposed for evaluating the optimum.

In the next section we employ a mathematical device reaching to a simpler estimation

scheme for g; this leads to a solution maximizing the likelihood functional amongst a

particular restricted class of estimates. Other relevant references from the literature in

the general empirical Baye area are well catalogued by Laird.

2. THE 04PIRICAL BTXMTIOK OF THE PRIOR DENSITY

Consider the limiting situation whore the sampling variation kn each of the

fi(xil~i) distributions approach zero, so that the 01 become effectively known and

equal to their maximum likelihood estimates 0 1. In this limiting case the maximum

likelihood estimate of g(9) is

g( = *m' ! 6(5)a j (6) (e60) (2.1)
irni i i-i iI

where 6el(6) denotes the Dirac-delta function at 8 - *i . This motivates us to consider,

in general, estimates for g which take the form
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i(e) = a- 6a(e) (0 60) (2.2)
i= i

but where ale...,a m  are now arbitrary points to be estimated from the data. We

anticipate that, when the first-stage sampling variation is reintroduced, this will cause

the ai  to adjust the 0. by reducing their overall spread, and hence cause a sort of

Stein-effect on the 8..

Substituting the function in (2.2) for g in (1.1) provides us with the log-

likelihood of a1 ,...,a, which is given by

U U

L(a) - I log k fi xiak) - a log a (2.3)
i-i k-1

The ai will be estimated by maximizing the function in (2.2). The optimizing values

could be interpreted as hypothetical observations from the distribution g roughly

speaking equal in information content about g to the information about g contained in

the log-likelihood functional (1.1).

Note that in all the numerical examples we have considered, the optimal values for

a,....,a mwill become concentrated at a smaller number of estimated points, say

b ,...,b p . The prior probability attached to point b. should then be estimated by

g(b ) = #(ai;ai . b.)/m (j 1,...,p) (2.4)

This yields a discrete distribution which assigns estimated probabilities to p

estimated points, where p is also obtained empirically. We anticipate that it will be

close in numerical terms to the unrestricted maximum likelihood estimate proposed by Laird.

Differentiating the function in (2.2) with respect to a, gives us, after some

rearrangement

3L a 3 log fiat (6- 1 ... m) (2.5)

P i 3a

where
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U

Pwith p it A/ k (2.6)
it X

wikth

A " f ixi 1& (2.7)

Note that, when ae...,a are unequal, the expression in (2.6) is just the posterior

probability that 8 =a., under the prior distribution in (2.1). Therefore, solving the

maximum likelihood equations for the a1 also gives us empirical estimates for the entire

posterior distribution for each S for i - 1,...,mi so that posterior estimates may

also be obtained for the 0 .

Equating the derivatives in (2.3) to zero yields a set of equations which may in

general be solved by any standard iterative procedure e.g. Newton-Raphson. However, the

computations turn out to be particularly simple in a variety of special cases.

(a) Uxponential family of ;sampling distributions

"bon the sampling densities fi assume the forms

f (x = oxpg(n() ) + t(xi)C(Oi  + (lx 1 (2.8)

for appropriate choices of the functions BCD, and t, then the maximum likelihood

equations for the a are

.(1l) 1 tlxlli

-- (t 3,.) (2.9)1)1 (at) ) t

i-1

where the Pit are defined in (2.4). Equations (2.7) may be solved by substituting trial

values (initially the values et) for the a1  in the right hand sides, transforming the

left hand sides into fresh values for the a. and then cycling until convergence. For

example, when the xI possess Poisson distributions with respective mans Oi, we have,
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U x P
a (2.10)

P it
i-I

clearing demonstrating that each at takes the form of a weighted average of Xl,...,xm;

so that the overall spread of the at will be less than that of the xi .

(b) Binomial distributions with unequal sample size

If the xi are independent and possess binomial distributions, given the

corresponding probabilities 8i and sample sizes ni then the maximum likelihood

equations for the at are given by

m m
at A X xiPiJ/ P it (2.11)

where we may take the Ait in the expression for Pit in (2.6) to satisfy

axi n'xl
Ai - a 1 i( - a ) n X1(2.12)

since the functional contributions to the sampling distribution cancel themselves out.

Note that -2 log Ait takes the form of a distance measure between xi/n i and a. Hence

at in (2.11) wll depend more heavily upon those xi/n i  nearby then on outlying xi/n i ,

This creates a mechanism enabling a1 ,...,a m  to take full account of the random

variability in xI,..,X m .

(c) Normal Observations with Unknown Variance

Suppose now that for i - 1,...,m and j - 1,...,niu the observations xij are

independent and normally distributed with respective group means 8 and common variance
i

0 . Then a may be estimated jointly with the prior values at by solving the joint

maximum likelihood equations
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a a

a, i n1 x niPi 1,°..,.) (2.12)

and

02 " ICs 2 + N-1 axn 2 P (2.13)
i-I k-

where
U

i=

n

x, "nI xii •

s 2 -I (xi

and the P i are defined in (2.6), with

A P( .1 io-2 (;i  ak)2 }  (2.14)

Equations (2.12) and (2.13) may be solved by combining the iterations recommended in

(a),for fixed 02, with simple cyclic substitutions on a

The above procedure may be employed in either the Model I or Model II ANOVh situations

since our assumptions relate either to an exchangeability model for fixed effects, or a

random effects model. Note that the classical F-test for equality of the means may be

replaced by an inspection as to whether or not all the estimated a. are equal; t-tests

for individual differences may be avoided by comparing the posterior means discussed in the

next section.

3. POSTERIOR ESTIMATION OF THE SAMPLING PARAMETERS

Once the iterations have been completed for the at and Pit' the parameters

am ay be estimated e.g. by their empirical posterior means

a

k 1 a&Pk& (k - 1,....) (3.1)

-6-



For example, in the normal situation (2.12) we have

m m m
I n.( n p~ p. (3.2)

which can be arranged in the form of a weighted average of x ,...,x m . Again, as

- 2 log Ait , from (2.14), is a distance measure between xi  and ak, the posterior mean

in (3.2) will take more account of xi s which are close to x rather than those which

are some distance away. We suggest that (3.2) will in many practical situations be

preferable to the James-Stein estimator, as far as meaningful statistical interpretations

are concerned since it does not shrink all the x. irrevocably towards a common value

without taking into account the statistical scatter of the data.

4. NUMERICAL EXAMPLES

The data in Table 1 related to the males and females on 10 different courses, and were

previously analyzed by Leonard (1972) using a Bayes-Stein estimation technique for binomial

data.

Table 1. Classification of Students According to Sex and Course

Course Female Male % of Females Bayes-Stein Empirical

1 42 47 47.2 44.4 44.0

2 32 40 44.4 41.6 44.0

3 45 57 44.1 42.1 44.0

4 10 16 38.5 34.5 43.2

5 7 20 25.9 26.7 21.1

6 3 12 20.0 24.1 18.2

7 3 13 18.8 23.6 17.3

8 5 22 18.5 22.3 15.7

9 12 72 14.3 16.9 15.7

10 11 84 11.6 14.5 15.3
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The rows of the table were not originally arranged according to the values of the

percentagesi the present ordering is intended simply for ease of presentation.

The Bayes-Stein estimates in the fifth column shrink each observed proportion towards

an average value of 28.0. The amounts of shrinkage vary according to sample size and

according to distance from the average value when measured on a logistic scale.

Application of our empirical method in Section 3b yielded an estimated common prior

distribution for the binomial probabilities. This assigned prior probabilities 4/10 and

6/10 to the values 0.440 and 0.153.

We see from the last column of Table I that our empirical procedure has discerned that

the observed percentages lie in too clearly distinct groups. It has moreover decided that

the fourth percentage lies in the first group, and therefore pulls the 38.5 value right up

to 43.2, in the opposite direction than the radical shrinkage to 34.5 which was suggested

by James-Stein. The first three percentages are regarded as equal with the fourth

percentage just a small distance away.

The second group of six percentages causes shrinkages for the first five which are all

opposite in direction to that suggested by Bayes-Stein. Percentage number 5 is slightly

unwilling to join the group, because of possible inclinations to either join the first

group or to stay on its own. Overall the differences from James-Stein are quite

remarkable.

We also reanalyzed the famous baseball batting example introduced by Efron and Morris

(1974). Again, the common prior distribution was estimated by a two-point discrete

distribution, but this time the two points were close enough together to retain Bayes-Stein

type shrinkages towards a common value. Interestingly our posterior means were virtually

identical to the estimates proposed by Efron and Moris even though the latter were based

upon very different (parametric) assumptions. Therefore our estimates seem to agree with

Bayes-Stein when the scatter of the data is well-enough behaved to justify these simple

shrinkages.

--



The data in Table 2 comprise a subset of a well-known 14 x 14 contingency table

introduced by Karl Pearson (1904). The entries in the fourth column give the proportions

of sons who follow their father's occupation, for each of fourteen occupations; the

categories have again been rearranged into a suitable order.

Table 2: Proportions of Sons Following Their Father's Occupation

Occupation (i) x i ni Observed Proportion Smoothed Proportion

1 0 26 0.000 0.020

2 6 88 0.068 0.103

3 11 106 0.104 0.103

4 7 54 0.130 0.115

5 6 44 0.137 0.127

6 4 19 0.211 0.221

7 18 69 0.261 0.257

8 9 32 0.281 0.270

9 6 18 0.333 0.334

10 23 51 0.451 0.477

11 54 115 0.470 0.480

12 20 41 0.488 0.480

13 28 50 0.560 0.480

14 51 62 0.823 0.823
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In this case our empirical prior distribution assigned respective probabilities 1/14,

4/14, 4/14, 4/14 and 1/14 to the points 0.020, 0.103, 0.257, 0.480, and 0.823, representing

a number of interesting features in the scatter of the data. The corresponding posterior

means we described in the fifth column of the table.

The first two groups illustrate that our method can be used to decide whether or not

particular observations are outliers. The second proportion (0.068) has been pulled back

into the main group, whilst the first proportion (0.000) has been left virtually alone.

Similarly the 14th proportion (0.823) is left alone by the fifth group whilst the ninth

proportion is of interest as an internal outlier isolating itself between the third and

fifth groups.

Our method provides a type of cluster analysis since it groups the observations into

definite clusters. Also, the method seems to be robust under deviations from the

assumption of exchangeability of O8 ....On. If there is strong evidence in the cluster to

refute exchangeability for a particular parameter then the latter is simply estimated as an

outlier without radically effecting the other estimates. Indeed, our method effectively

splits the parameters up into exchangeable subsets thus providing an alternative to the

Efron and Morris (1973b) procedure for deciding whether to combine possibly related

estimation problems. Finally, our method could be viewed as an alternative to standard

techniques for multiple comparisons since it smooths the data to a form where it is easy to

compare subsets of the parameters.

5. REILATIONSHIP WITH NOMPARANBTRIC KERNEL METHODS

Suppose, for simplicity, that f i(x ; ) belongs to the symmetric location family

f i. . f(xI - i ) (5.1)

Then our method estimates the marginal density

4(x) f f f(Ix - e1)gC()do (5.2)

by

-10-



m

(x) - m f(Ix - I) (x e X) (5.3)

where the a, are calculated via our computational procedure.

We see that (5.3) could also be used as an estimate for the density C(o) under the

assumption that the sampling (rather than marginal) density of x1,... ,x is equal to

U(x). These are close similarities with nonparametric kernel estimators of the form

- Is
C W -1 f(Ix - x i) (5.4)

These are prevalent in the literature see Silverman (1978) for some recent

developments. The estimate t* averages the kernels f(Ix - xi) centered on the data

points, rather than centered on al....am., as in (5.3).

Kernel estimators are open to criticism on the following grounds

i) They tend to lead to estimators which are too "flat*. The variance corresponding

to 4*(x) is theoretically always longer than the sample variance of the observations.

(ii) When an equal kernel is placed over each data point, then, according to its

spread, the estimator very often tends to be either too flat, or too bumpy in the details.

(iii) When, say, f is a normal density with mean zero and variance a
2
, the value

-1
0 is referred to as the "band width" and regulates the degree of smoothing. It is

notoriously difficult to obtain a reasonable analytic method for estimating 0
2 

from the

data.

Our procedure promises to answer all three criticisms. Firstly, as the ai are more

compressed than the xi the estimator t in (5.3) will always be less flat. Secondly, by

estimating the ai according to the scatter of the data it will avoid many of the problems

in (iii). Thirdly, when f is a normal (or other symmetric) density with scale parameter

0 
2

we may estimate 0
2 

as well. In the normal case we may use equations (2.12)-(2.14)

with single replications ni 1 1, when the equations still possess enough structure to

2
sensibly estimate 0

-11-



The kernel ideas will be pursued in greater detail elsewhere.
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ABSTRACT (cont.)

when the observations are located in two or more clearly distinct groups, the
maximum likelihood estimates are roughly speaking constrained towards common
values within each group. The method also detects outliers; an extreme
observation will either be regarded as an outlier and not substantially
adjusted towards the other observations, or it will be rejected as an outlier,
in which case a more radical adjustment takes place. The method is
appropriate for a wide range of sampling distributions and may also be viewed
as an alternative to standard multiple comparisons, cluster analysis, and
nonparametric kernel methods.
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